Gradient methods for computing the Drazin-inverse solution
نویسندگان
چکیده
منابع مشابه
A Higher Order Iterative Method for Computing the Drazin Inverse
A method with high convergence rate for finding approximate inverses of nonsingular matrices is suggested and established analytically. An extension of the introduced computational scheme to general square matrices is defined. The extended method could be used for finding the Drazin inverse. The application of the scheme on large sparse test matrices alongside the use in preconditioning of line...
متن کاملOrthogonal polynomials and semi-iterative methods for the Drazin-inverse solution of singular linear systems
In this work we present a novel class of semi-iterative methods for theDrazin-inverse solution of singular linear systems,whether consistent or inconsistent. The matrices of these systems are allowed to have arbitrary index and arbitrary spectra in the complex plane. The methods we develop are based on orthogonal polynomials and can all be implemented by 4-term recursion relations independently...
متن کاملSemi-iterative Methods for the Drazin Inverse Solution of Linear Equations in Banach Spaces
We study semi-iterative methods for an approximate solution of a linear equation x = Tx+c with a bounded linear operator T acting on a Banach space X, considering separately the cases when λ = 1 is an isolated and accumulation spectral point for T . We give necessary and sufficient conditions for the convergence of a semi-iterative method, utilizing the generalized Drazin inverse introduced by ...
متن کاملInterpolation algorithm for computing Drazin inverse of polynomial matrices
In this paper we introduce an interpolation method for computing the Drazin inverse of a given polynomial matrix. This method is an extension of the known method from [15], applicable to usual matrix inverse. Also, we improve our interpolation method, using a more effective estimation of degrees of polynomial matrices generated in Leverrier-Faddev method. Algorithms are implemented and tested i...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2013
ISSN: 0377-0427
DOI: 10.1016/j.cam.2013.04.030